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Abstract: An efficient prediction of range aggregation based on dagger uses bundled range aggregation, which can 

be regarded as the simultaneous execution of a range aggregate query on multiple datasets, returning a result for 

each dataset. Bundled range aggregation, which is conceptually equivalent to running a range aggregate query 

separately on multiple datasets, returning the query result on each dataset. In particular, the queried datasets can 

be arbitrarily chosen from a large number (hundreds or even thousands) of candidate datasets. The challenge is to 

minimize the query cost no matter how many and which datasets are selected. We propose DAGGER (Dataset 

Aggregation), an iterative algorithm that trains a deterministic policy that achieves good performance guarantees 

under its induced distribution of states. we found that Dagger is more stable and learns faster, while being more 

robust with respect to the choice of learning rates and action costing. These advantages are more pronounced in 

the parameter-free versions of the algorithms which avoid stochastic cost estimates and need simpler expert policy 

definitions. Finally, we assessed the effect of the learning rate in complex structured prediction tasks in which 

mistaken predictions can inhibit imitation learning algorithms from exploring useful parts of the training data. 
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I.     INTRODUCTION 

Range aggregation is a multi-bucket value source based aggregation that enables the user to define a set of ranges - each 

representing a bucket. During the aggregation process, the values extracted from each document will be checked against 

each bucket range and "bucket" the relevant/matching document. Note that this aggregation includes the from value and 

excludes the to value for each range. Range aggregation computes an aggregate result about the data items satisfying a 

range predicate.  

To be specific, denote by D a dataset where each item has a key in the real domain. Given an interval r, let D(r) be the set 

of items in D whose keys are covered by r. 

A range count query returns the number of items in D(r). Sometimes each item may carry a real-valued weight. In this 

case, a range sum query returns the total weight of the items in D(r). Similarly, range aggregation can also be performed 

using other aggregate functions. For example, a range average query reports the average weight of the items in 

D(r).Bundled range aggregation is motivated by the fact that, in applications where data are naturally divided into 

categories, a user is often interested in some, but not all, of the categories. For example, consider a crime database that 

stores, for each city in the US, the number of crimes each day. Here, every city is a category, in which each item is a pair 

of (date, crime number), where date is the item’s search key, and crime number is its weight. The B-tree is a well-known 

structure for solving the classic problem of range reporting. With slight augmentation, aB-tree can be changed into an 

aggregate B-tree (aB-tree), which supports range aggregation effectively. There are two straight forward ways to apply 

aB-trees for bundled range aggregation. One aB-tree on all categories and One aB-tree for each category. We are not 

aware of any previous study dedicated to bundled range aggregation. This problem, given its importance both as a 

standalone operator and as the building brick of more complex problems, deserves specialized efforts to improve the 
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above straightforward methods. By using some methods like preliminaries, the aggregate bundled b-tree, dynamic 

maintenance and then more. In dynamic maintenance patching and upgrade algorithms are used. The algorithms are 

algorithm spilt and algorithm merge. The data and queries are used in experiments. 

II. RELATED WORK 

A framework for supporting OLAP operations over spatiotemporal data is described. We argue that the spatial and 

temporal dimensions should be modeled as a combined dimension on the data cube and present data structures, which 

integrate spatiotemporal indexing with pre-aggregation. While the well-known materialization techniques require a-prior 

knowledge of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution of 

ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions. Spatio-temporal databases have 

received considerable attention during the past few years due to the accumulation of large amounts of multi-dimensional 

data evolving in time, and the emergence of novel applications such as traffic supervision, and mobile communication 

systems. Research has focused on modeling, indexing and query processing issues for problems involving historical 

information retrieval, motion and trajectory preservation, future location estimation etc. All these approaches assume that 

object locations are individually stored, and queries ask for objects that satisfy some spatio-temporal condition. 

Throughout the paper we assume that the spatial dimension at the finest granularity consists of a set o regions. This paper 

addresses these problems by proposing several indexing solutions. First we deal with static spatial dimensions and focus 

on queries that ask for aggregated data in a query window over a continuous time interval. Numerous indexes have been 

proposed for indexing spatial and temporal databases. In data warehouses and OLAP the most common conceptual model 

for data ware houses is the multidimensional data view. 

Multiversion SB-Tree (MVSB-tree) for incrementally maintaining and efficiently computing the dominance-sum queries 

and in turn range-temporal aggregate queries. Computing temporal aggregates is an important but costly operation for 

applications that main-tain time-evolving data. Due to the large volume of such data, performance improvements for 

temporal aggregate queries are critical. Previous approaches have aggregate predicates that involve only the time 

dimension. In this paper we examine techniques to compute temporal aggregates that include key-range predicates as 

well. In particular we concentrate on the SUM aggregate, while count is a special case. To handle arbitrary key ranges, 

previous methods would need to keep a separate index for every possible key range. We analyze the performance of our 

approach and present experimental results that show its efficiency. Furthermore, we address a novel and practical 

variation called functional range-temporal aggregates. Here, the value of any record is a function over time. The meaning 

of aggregates is altered such that the contribution of a record to the aggregate result is proportional to the size of the 

intersection between the record's time interval and the query time interval. Both analytical and experimental results show 

the efficiency of our result. This paper proposes an indexing technique for computing range-temporal aggregates with 

guaranteed logarithmic access time. First, the plain range-temporal aggregate query is reduced into several sub-queries. 

Next, a index structure called the Multiversion SB-Tree (MVSB-tree) is proposed to solve these sub-queries. The 

proposed structure incorporates features from both the SB-Tree and the Multiversion B+-tree (MVBT) This structure 

supports efficient queries and yet allows similarly efficient updates. The SB-tree was proposed to answer the temporal 

aggregate queries without range predicates. The MVSB-tree has very fast (logarithmic) query time and update time, at the 

expense of a small space overhead. MVSB-tree should prove that it is asymptotically optimal if exact answers are 

required. Our result of this paper examined temporal aggregate queries in the presence of key-range predicates. Such 

queries allow warehouse managers to focus on tuples grouped by some key range over a given time interval. We 

considered both plain and functional range-temporal aggregates. These problems are reduced to dominance-sum queries. 

Indexing uncertain categorical data two index structures for efficiently searching uncertain categorical data, one based on 

the R-tree and another based on an inverted index structure. Using these structures, we provide a detailed description of 

the probabilistic equality queries they support. Experimental results using real and synthetic datasets demonstrate how 

these index structures can effectively improve the performance of queries through the use of internal probabilistic 

information. Uncertainty is prevalent in many application domains. Consider for example a data cleaning application that 

automatically detects and corrects errors. This paper addresses the problem of indexing uncertain categorical data 

represented as a set of values with associated probabilities. We propose two different index structures. We show that these 

structures support a broad range of probabilistic queries over uncertain data, including the typical equality, probability 

threshold, and top-K queries. Our index structures can also be used for queries that are only meaningful for uncertain data 
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such as distribution similarity queries. The new indexes are shown to provide efficient execution of these queries with 

good scalability through experimental validation using real and synthetic data. Under the categorical uncertainty model, a 

relation can have attributes that are allowed to take on uncertain values. This definition of equality is a natural extension 

of the usual equality operator for certain data. As with the regular equality operator, this uncertain version can be used to 

define operations such as joins over uncertain attributes. There are two alternative strategies to split an overfull page: top-

down and bottom-up. In the top-down strategy, we pick two children MBRs whose boundaries are distribution ally 

farthest from each other according to the divergence measures. With these two serving as the seeds for two clusters, all 

other UDAs are inserted into the closer cluster. The real dataset is generated by text clustering/ categorization of customer 

service constraints for a major cell phone service provider in the context of CRM databases.  

III.    DAGGER ALGORITHM 

DAGGER (Dataset Aggregation), an iterative algorithm that trains a deterministic policy that achieves good performance 

guarantees under its induced distribution of states. In its simplest form, the algorithm proceeds as follows. At the first 

iteration, it uses the expert’s policy to gather a dataset of trajectories D and train a policy that best mimics the expert on 

those trajectories. Then at iteration n, it uses n to collect more trajectories and adds those trajectories to the dataset D. The 

next policy is the policy that best mimics the expert on the whole dataset D. In other words, DAGGER proceeds by 

collecting a dataset at each iteration under the current policy and trains the next policy under the aggregate of all collected 

datasets. The intuition behind this algorithm is that over the iterations, we are building up the set of inputs that the learned 

policy is likely to encounter during its execution based on previous experience (training iterations).This algorithm can be 

interpreted as a Follow-The-Leader algorithm in that at iteration n we pick the best policy in hindsight, i.e. under all 

trajectories seen so far over the iterations. The proposed method solves the greater than B page size problem. DAGGER 

(Dataset Aggregation), an iterative algorithm that trains a deterministic policy that achieves good performance guarantees 

under its induced distribution of states 

 Dataset Collection and Pre-processing 

 Classification of attributes 

 Dataset Aggregation Process 

 Feature selection or dimensionality reduction 

3.1 Dataset Collection and Pre-Processing: 

A data set is a collection of data, usually presented in tabular form. Each column represents a particular variable. Each 

row corresponds to a given member of the data set in question. It lists values for each of the variables, such as height and 

weight of an object or values of random numbers. Each value is known as a datum. The data set may comprise data for 

one or more members, corresponding to the number of rows. The values may be numbers, such as real numbers or 

integers, for example representing a person's height in centimeters, but may also be nominal data (i.e., not consisting of 

numerical values), for example representing a person's ethnicity. More generally, values may be of any of the kinds 

described as a level of measurement. For each variable, the values will normally all be of the same kind. However, there 

may also be "missing values", which need to be indicated in some way. 

3.2.Classification of Attributes: 

Classifiers are generated for each class of event using relevant features for the class and classification algorithm. Binary 

classifiers are derived from the training sample by considering all classes other than the current class as other, e.g., C 

normal will consider two classes: normal and other. The purpose of this phase is to select different features for different 

classes by applying the information gain or gain ratio in order to identify relevant features for each binary classifier. 

Moreover, applying the information gain or gain ratio will return all the features that contain more information for 

separating the current class from all other classes. The output of this ensemble of binary classifiers will be decided using 

arbitration function based on the confidence level of the output of individual binary classifiers. 

3.3. Dataset Aggregation Process: 

It trains a deterministic policy that achieves good performance guarantees under its induced distribution of states. In its 

simplest form, the algorithm proceeds as follows. At the first iteration, it uses the expert’s policy to gather a dataset of 
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trajectories D and train a policy that best mimics the expert on those trajectories. Then at iteration n, it uses ^n to collect 

more trajectories and adds those trajectories to the dataset D. The next policy is the policy that best mimics the expert on 

the whole dataset D. 

3.3 Feature Selection or Dimensionality Reduction: 

Feature selection or reduction keeps the original features as such and select subset of features that predicts the target class 

variable with maximum classification accuracy. It uses the intended learning to evaluate the usefulness of features, while 

filter evaluates features according to heuristics based on general characteristics of the data. The wrapper approach is 

generally considered to produce better feature subsets but runs much more slowly than a filter. 

IV.    CONCLUSION AND FUTURE WORK 

In this work, we have achieved query cost minimization, performance, efficiency, etc., through DAGGER algorithm. 

DAGGER proceeds by collecting a dataset at each iteration under the current policy and trains the next policy under the 

aggregate of all collected datasets. The intuition behind this algorithm is that over the iterations, we are building up the set 

of inputs that the learned policy is likely to encounter during its execution based on previous experience (training 

iterations). This algorithm can be interpreted as a Follow-The-Leader algorithm in that at iteration n and pick the best 

policy in hindsight, i.e. under all trajectories seen so far over the iterations. The system then produces its best approximate 

result for that penalty function. Proposed techniques for online aggregation provide a way to simultaneously answer a 

batch of queries using progressive approximations of the underlying dataset. Priority can be placed on different cells, 

giving users control over a form of structural error. For appropriate data this technique provides accurate answers quickly, 

but the entire relation must be viewed before results become exact. This paper explores how query approximation can be 

used as an alternative to data approximation to provide efficient progressive query answering tuned to an arbitrary penalty 

function.  

Provides a way to simultaneously answer a batch of queries using progressive approximations of the underlying dataset. 

Range aggregation a multi-bucket value source based aggregation that enables the user to define a set of ranges - each 

representing a bucket. During the aggregation process, the values extracted from each document will be checked against 

each bucket range and "bucket" the relevant/matching document. Bundled range aggregation, which can be regarded as 

the simultaneous execution of a range aggregate query on multiple datasets, returning a result for each dataset. B-trees are 

balanced trees that are optimized for situations when part or all of the tree must be maintained in secondary storage such 

as a magnetic disk. Since disk accesses are expensive (time consuming) operations, a b-tree tries to minimize the number 

of disk accesses. We are not aware of any previous study dedicated to bundled range aggregation. This problem, given its 

importance both as a standalone operator and as the building brick of more complex problems, deserves specialized 

efforts to improve the above straightforward methods. It present DAGGER (Dataset Aggregation), an iterative algorithm 

that trains a deterministic policy that achieves good performance guarantees under its induced distribution of states. In its 

simplest form, the algorithm proceeds as follows. The proposed method solves the greater than B page size problem. 

DAGGER (Dataset Aggregation), an iterative algorithm that trains a deterministic policy that achieves good performance 

guarantees under its induced distribution of states 
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